Crystal Structure of Mycobacterium tuberculosis 6-Hydroxymethyl-7,8-dihydropteroate Synthase in Complex with Pterin Monophosphate: New Insight into the Enzymatic Mechanism and Sulfa-drug Action

نویسندگان

  • Arthur M. Baca
  • Rachada Sirawaraporn
  • Stewart Turley
  • Worachart Sirawaraporn
  • Wim G. J. Hol
چکیده

0022-2836/00/051193±20 $35.00/0 The enzyme 6-hydroxymethyl-7,8-dihydropteroate synthase (DHPS) catalyzes the condensation of para-aminobenzoic acid (pABA) with 6-hydroxymethyl-7,8-dihydropterin-pyrophosphate to form 6-hydroxymethyl-7,8dihydropteroate and pyrophosphate. DHPS is essential for the de novo synthesis of folate in prokaryotes, lower eukaryotes, and in plants, but is absent in mammals. Inhibition of this enzyme's activity by sulfonamide and sulfone drugs depletes the folate pool, resulting in growth inhibition and cell death. Here, we report the 1.7 AÊ resolution crystal structure of the binary complex of 6-hydroxymethylpterin monophosphate (PtP) with DHPS from Mycobacterium tuberculosis (Mtb), a pathogen responsible for the death of millions of human beings each year. Comparison to other DHPS structures reveals that the M. tuberculosis DHPS structure is in a unique conformation in which loop 1 closes over the active site. The Mtb DHPS structure hints at a mechanism in which both loops 1 and 2 play important roles in catalysis by shielding the active site from bulk solvent and allowing pyrophosphoryl transfer to occur. A binding mode for pABA, sulfonamides and sulfones is suggested based on: (i) the new conformation of the closed loop 1; (ii) the distribution of dapsone and sulfonamide resistance mutations; (iii) the observed direction of the bond between the 6-methyl carbon atom and the bridging oxygen atom to the a-phosphate group in the Mtb DHPS:PtP binary complex; and (iv) the conformation of loop 2 in the Escherichia coli DHPS structure. Finally, the Mtb DHPS structure reveals a highly conserved pterin binding pocket that may be exploited for the design of novel antimycobacterial agents. # 2000 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dihydropteroate synthase from Streptococcus pneumoniae: structure, ligand recognition and mechanism of sulfonamide resistance.

DHPS (dihydropteroate synthase) catalyses an essential step in the biosynthesis of folic acid and is the target for the sulfonamide group of antimicrobial drugs. In the present paper we report two crystal structures of DHPS from the respiratory pathogen Streptococcus pneumoniae: the apoenzyme at 1.8 A (1 A=0.1 nm) resolution and a complex with DHPP (6-hydroxymethyl-7,8-dihydropterin monophospha...

متن کامل

Crystal Structure of the 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase•Dihydropteroate Synthase Bifunctional Enzyme from Francisella tularensis

The 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) enzymes catalyze sequential metabolic reactions in the folate biosynthetic pathway of bacteria and lower eukaryotes. Both enzymes represent validated targets for the development of novel anti-microbial therapies. We report herein that the genes which encode FtHPPK and FtDHPS from the biowarfare ag...

متن کامل

Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities.

The plant enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (HPPK/DHPS) is a mitochondrial bifunctional protein involved in tetrahydrofolate synthesis. The first domain (HPPK) catalyses the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (dihydropterin) by ATP, leading to 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (dihydropterinPP(i)) and AMP....

متن کامل

Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria.

In pea leaves, the synthesis of 7,8-dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase enzyme, which represented 0.04-0.06% of the matrix proteins. The enzyme had a native mol. wt of 280-300 kDa and was made up of identical subunits o...

متن کامل

Regulation by oligomerization in a mycobacterial folate biosynthetic enzyme.

Folate derivatives are essential cofactors in the biosynthesis of purines, pyrimidines and amino acids across all forms of life. Mammals uptake folate from their diets, whereas most bacteria must synthesize folate de novo. Therefore, the enzymes in the folate biosynthetic pathway are attractive drug targets against bacterial pathogens such as Mycobacterium tuberculosis, the cause of the world's...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000